Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442151

RESUMO

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , 60652 , Herpesviridae , Apresentação de Antígeno , Citomegalovirus , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana Transportadoras , Peptídeos , Ubiquitina-Proteína Ligases/genética , Herpesviridae/fisiologia
2.
Fish Shellfish Immunol ; 147: 109400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253137

RESUMO

Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Proteína X Associada a bcl-2 , Herpesviridae/fisiologia , Apoptose/genética , Mitocôndrias , Carpa Dourada
3.
Fish Shellfish Immunol ; 143: 109181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871756

RESUMO

Cyprinid herpesvirus type 3 (CyHV-3), also called Koi herpesvirus (KHV), which leads to mass cyprinid mortality and enormous economic losses. To establish an infection, CyHV-3 needs to counteract host antiviral responses. CD81 belongs to the evolutionary conserved tetraspanin family of proteins. Several studies have shown that different members of the tetraspanin superfamily modulates different virus infectious processes. Here we aimed at analysing the role of CD81 in CyHV-3 infection. In this study, we cloned and characterized the CD81 of Common Carp, the open reading frame of CcCD81 gene was 702 bp, which encoded 234 amino acids with four transmembrane domains (TM1 to TM4), a small extracellular loop (SEL), and a large extracellular loop (LEL). Tissue distribution analysis showed that CcCD81 was widely expressed in all the tested tissues with the highest expression in head kidney, followed by a high expression in brain. Subsequently, expression levels of CcCD81 were significantly increased in CCB cells within the first 3h after infection, meanwhile, the expression of viral gene VP136 was reduced after CcCD81 knockdown in CCB cells post CyHV-3 infection. Furthermore, CcCD81 knockdown can significantly reduce the autophagy process and increase the promoter activity of ISRE and IFN-1 in the CCB cells after viral infection, as well as other genes involved in the IFN signaling pathway, including RIG-1、MDA5、MAVS、TBK1 and IRF3. Taking the data together, we revealed that CcCD81 mediates autophagy and blocks RIG-1-mediated antiviral signaling and negatively regulates the promoter activity of type I interferon (IFN) promoting virus replication. These results reveal a new link between autophagy and four-transmembrane-domain protein superfamily and contribute to elucidate the mechanism of CyHV-3 infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Interferon Tipo I , Animais , Infecções por Herpesviridae/veterinária , Carpas/genética , Carpas/metabolismo , Herpesviridae/fisiologia , Interferon Tipo I/genética , Antivirais , Autofagia , Transdução de Sinais , Tetraspaninas , Replicação Viral
4.
J Eur Acad Dermatol Venereol ; 37(12): 2550-2557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591509

RESUMO

BACKGROUND: Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) is a severe adverse event (mortality of 10%). Its pathophysiology involves herpesviruses, particularly HHV-6, but the exact mechanisms are still poorly understood. OBJECTIVE: To describe severe cases of DRESS and especially their association with herpesvirus reactivation. METHODS: This study was a multicentre case series conducted between 2007 and 2021 at five University Hospital Centres in France. The study included patients who had severe DRESS, which was defined as death, transfer to the intensive care unit (ICU), or severe damage to internal organs. We excluded patients without blood PCR sample, without a drug formally attributed or with RegiSCAR score < 6. We collected data on severity, causative drug, associated visceral damage and results of viral blood PCRs. HHV-6 reactivation was studied in skin biopsies by detection of small non-coding transcripts (HHV-6 miR-aU14) and a late viral protein (GP82/105). RESULTS: Fifty-two patients were included (29 female, median age 62, interquartile range (IQR) [37;72]). Eight patients (15%) died, 13 (27%) were admitted to ICU. Most patients (n = 34; 65%) had multisystem involvement: most frequent was liver (n = 46; 88%), then renal failure (n = 24; 46%). Forty patients (77%) had at least one blood viral reactivation among HHV-6, EBV or CMV, of which 21 (53%) had at least two. Median time of blood HHV-6 reactivation was 24 days (IQR [20;35]). HHV-6 reactivation was demonstrated in 15 out of 20 skin biopsies, with a median time of 11 days [9;17]. CONCLUSIONS: We confirmed the high rate of HHV-6 reactivation in severe DRESS and demonstrated cutaneous HHV-6 reactivation using small non-coding transcripts (HHV-6 miR-aU14), which preceded viral PCR positivity in blood. These results suggest that HHV-6 reactivation during DRESS may start in skin. Furthermore, search for miR-aU14 in skin biopsy could become a useful diagnostic tool for early detection of HHV-6 reactivation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Eosinofilia , Herpesviridae , Herpesvirus Humano 6 , MicroRNAs , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Ativação Viral , Herpesviridae/fisiologia , Eosinofilia/complicações , Herpesvirus Humano 6/fisiologia
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176071

RESUMO

Genome duplication supplies raw genetic materials and has been thought to be essential for evolutionary innovation and ecological adaptation. Here, we select Kelch-like (klhl) genes to study the evolution of the duplicated genes in the polyploid Carassius complex, including amphidiploid C. auratus and amphitriploid C. gibelio. Phylogenetic, chromosomal location and read coverage analyses indicate that most of Carassius klhl genes exhibit a 2:1 relationship with zebrafish orthologs and confirm two rounds of polyploidy, an allotetraploidy followed by an autotriploidy, occurred during Carassius evolution. The lineage-specific expansion and biased retention/loss of klhl genes are also found in Carassius. Transcriptome analyses across eight adult tissues and seven embryogenesis stages reveal varied expression dominance and divergence between the two species. The expression of klhls in response to Carassius herpesvirus 2 infection shows different expression changes corresponding to distinct herpesvirus resistances in three C. gibelio gynogenetic clones. Finally, we find that most C. gibelio klhl genes possess three alleles except eight genes that have lost one or two alleles due to genome rearrangement. The allele expression bias is prosperous for Cgklhl genes and varies during embryogenesis owning to the sequential expression manner of the alleles. The current study provides global insights into the genomic and transcriptional evolution of duplicated genes in a given superfamily resulting from multiple rounds of polyploidization.


Assuntos
Cyprinidae , Perfilação da Expressão Gênica , Genes Duplicados , Genômica , Família Multigênica , Poliploidia , Animais , Alelos , Cyprinidae/embriologia , Cyprinidae/genética , Cyprinidae/virologia , Desenvolvimento Embrionário , Evolução Molecular , Proteínas de Peixes/genética , Genes Duplicados/genética , Herpesviridae/fisiologia , Família Multigênica/genética , Filogenia , Peixe-Zebra/genética
6.
Front Immunol ; 14: 1161145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187746

RESUMO

Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.


Assuntos
Crassostrea , Herpesviridae , Animais , Herpesviridae/fisiologia , Hemócitos , Imunidade Inata , Poli I-C
7.
J Fish Dis ; 46(6): 663-677, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916652

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) can induce up to 100% mortality among carp populations. To date, there has been no safe method to prevent the consequences of the activity of CyHV-3. Thyme is widely used in cooking due to its flavour. Both thyme and thyme essential oil (TEO) are used in traditional herbal medicine, mainly to treat respiratory system disorders. In this study, TEO containing predominantly cymene and thymol was applied to explore its antiviral effect. The toxicity of TEO was examined in MTT and crystal violet assays. The anti-CyHV-3 activity of TEO in the intracellular and extracellular stages of the viral replication cycle was explored in a plaque assay and TaqMan qPCR. TEO interfered with the intracellular stages of the CyHV-3 replication cycle with selectivity indexes (SI) of around 5. It also displayed virucidal activity in a dose- and time-dependent manner. Two-hour preincubation of CyHV-3 with TEO generated SI, ranging from 13.37 to 18.47 depending on cell line and method of examination. Preincubation of cells with TEO at a safe concentration did not decrease the intracellular viral DNA copy number, which suggests that TEO does not disturb the attachment of the virus to the cells. Further research regarding the antiviral activity of compounds of TEO is required in order to indicate the most potent molecules that could be considered candidates for application in aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Óleos Voláteis , Thymus (Planta) , Animais , Óleos Voláteis/farmacologia , Doenças dos Peixes/tratamento farmacológico , Herpesviridae/fisiologia , Antivirais/farmacologia , Replicação Viral
8.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542408

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a fundamental mechanism to compartmentalize biomolecules into membraneless organelles. In this issue, Zhou et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202201088), report that MHV-68 ORF52 undergoes LLPS to form cytoplasmic virion assembly compartments, regulating the spatiotemporal compartmentalization of viral components.


Assuntos
Citoplasma , Herpesviridae , Montagem de Vírus , Citoplasma/virologia , Herpesviridae/fisiologia , Organelas
9.
Fish Shellfish Immunol ; 132: 108460, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36503057

RESUMO

Cyprinid herpesvirus-2 (CyHV-2) is an important virus that causes herpesviral hematopoietic necrosis disease (HVHND) leading to huge economic losses in goldfish (Carassius auratus). However, until now no proper prophylactic measure or treatment is available for CyHV-2 infection in goldfish. Hence, in this experiment, we developed a heat-inactivated CyHV-2 vaccine and evaluated its performance in goldfish. Initially, CyHV-2 was propagated in the fantail goldfish fin (FtGF) cell line and the titer of the viral inoculum was 107.8 TCID50/ml. Subsequently, various temperatures (40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) were evaluated to achieve the complete inactivation of CyHV-2. Only the viral inoculum inactivated at 80 °C for 1 h did not show any cytopathic effect in the FtGF cell line after five blind passages. Hence the heat-inactivated CyHV-2 vaccine developed at 80 °C was further used for immunization trials in goldfish. The experimental goldfish were intraperitoneally immunized with 300 µL of the heat-inactivated CyHV-2 vaccine. Subsequently, the kidney and spleen tissues were sampled at various time points post-vaccination (6th hr, 2nd day, 4th day, 6th day, 10th day, 16th day, and 30th day) to evaluate the expression of immune genes (IL-12, IL-10, IFN-γ, CD8, and CD4). A significant upregulation of immune genes was observed at various time points in the kidney and spleen tissue of the vaccinated goldfish. Furthermore, in order to study the efficacy of the vaccine, the experimental fish were challenged with CyHV-2 (107.8 TCID50/ml) after the 30th day post-vaccination. The survival of the fish in the vaccine group (86.7%) was significantly higher compared to the non-vaccinated group (20%). Moreover, the relative percentage survival of the vaccinated group was 83.34%. In spite of the single dose, the heat-killed vaccine developed in the present study elicited the immune response and offered better protection in goldfish against CyHV-2. However, further large-scale field performance evaluation studies are necessary to develop this vaccine on a commercial scale.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpa Dourada , Temperatura Alta , Vacinas de Produtos Inativados , Herpesviridae/fisiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Necrose
10.
Fish Shellfish Immunol ; 128: 206-215, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940535

RESUMO

Economic importance of common carp (Cyprinus carpio L.) increases every year. Viral diseases are major threat for carp aquaculture and cause significant economic losses. Koi herpesvirus (KHV) is one of the most serious carp diseases. Current study is focused on confirmation of possible differences in early immune response to KHV depending on level of resistance. Class I interferon signalling, complement cascade and cell-mediated cytotoxicity are hypothesized as major mechanisms of early innate immune response against KHV. Different breeds of common carp show distinct level of resistance to KHV. Two breeds of common carp with completely different susceptibility to KHV were chosen for current research: amur wild carp (AS) as highly resistant and koi carp (KOI) as very susceptible breed. KHV infection caused no mortalities, but the viral load in selected tissues increased during infection. Levels of expressions of chosen genes was examined using qRT-PCR and overall change in protein expression profiles was analysed by mass spectrometry. Significant differences in immune response between AS and KOI were detected mostly at the level of protein expression. Although cell-mediated cytotoxicity showed minimal influence during KHV infection, many immune response parameters related to class I interferon signalling pathway and complement cascade were increased earlier during KHV infection in AS comparing to KOI.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpas/genética , Herpesviridae/fisiologia , Imunidade , Interferons
11.
J Fish Dis ; 45(11): 1767-1780, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35934930

RESUMO

Several factors influence the susceptibility of cell lines to infection by different viruses. These can be related to tissue specificity of the viruses, physiological status of the cells, their differentiation level and their capacity to mount immune responses to combat viral infection. To study the influence of cell characteristics and immune responses on their susceptibility on virus infection, newly developed cell lines from common carp brain (CCAbre), fins (CCApin), gills (CCAgill), and heart (CCAcar) and the established common carp brain (CCB) cells were exposed to the carp infecting viruses cyprinid herpesvirus 3 (CyHV-3), carp oedema virus (CEV), and the yet not fully characterized common carp paramyxovirus (CCPV). The susceptibility of these cells to viral infection was measured by formation of a cytopathic effect (CPE), estimation of viral particles produced by the cells and presence of viral mRNA in the cells. Viral susceptibility of the cells was compared to cell characteristics, measured by mRNA expression of the epithelial cell markers cadherin 1, occludin, and cytokeratin 15 and the mesenchymal cell marker vimentin, as well as to the level of type I interferon (IFN) responses. All cell lines were susceptible to CyHV-3 and CCPV but not to CEV infection. The cell lines had different levels of type I IFN responses towards the viruses. Typically, CyHV-3 did not induce high type I IFN responses, while CCPV induced high responses in CCAbre, CCAcar, CCApin cells but no response in CCAgill cells. Consequently, the type I IFN response modulated cell susceptibility to CCPV but not to CyHV-3. Interestingly, when the three different passage levels of CCB cells were examined, the susceptibility of one passage was significantly lower for CyHV-3 and higher for CCPV infection. This coincided with a loss of epithelial markers and lower type I IFN responses. This study confirms an influence of cell characteristics and immune responses on the susceptibility of carp cell lines for virus infection. Depending on the vulnerability of the virus to type I IFN responses, cells with a lower IFN-response can be superior for replication of some viruses. Batches of CCB cells can differentiate and thus may have significantly different levels of susceptibility to certain viruses.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Interferon Tipo I , Viroses , Animais , Caderinas , Carpas/metabolismo , Linhagem Celular , Herpesviridae/fisiologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Queratina-15 , Ocludina , RNA Mensageiro , Vimentina
12.
J Fish Dis ; 45(5): 631-639, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35181893

RESUMO

Herpesviruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. In our previous studies, we found a new miRNA miR-KT-635 encoded by Cyprinid herpesvirus 2, which is predicted to target viral genes and cellular genes involved in innate immune signalling pathway and apoptosis. However, the function and target gene of miR-KT-635 are not proved. In this study, the regulating target gene of miR-KT-635 was proved as the viral gene ORF23 directly, the target point sequence on gene was verified and miR-KT-635 was identified to regulate the expression of ORF23 protein. According to the bioinformatics analysis, the tRNA domain and ribosome domain in the protein sequence of ORF23 were found to share high homology with R2i and P53R2i, which are related to the ribonucleotide reductase small subunit in the host (transform NTP to dNTP). Within expectations, silencing of viral ORF23 or transfecting miR-KT-635 mimics in Carassius auratus gibelio caudal fin cell line (GiCF) could suppress viral propagation significantly.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , MicroRNAs , Animais , Herpesviridae/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética
13.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215824

RESUMO

Haemorrhagic disease associated with elephant endotheliotropic herpesvirus (Elephantid herpesvirus, EEHV) infections is the leading cause of death for Asian elephant (Elephas maximus) calves. This study assessed the effect of captive herd management on EEHV shedding, as evidence of latent infection reactivation, focusing on: (1) the influence of social change on the odds of recrudescence; (2) the respective effects of between and within herd moves; and (3) characteristics of recrudescent viral shedding. Trunk and conjunctival swabs (n = 165) were obtained from six elephants at an EAZA-accredited zoo, collected during a period of social stability, and at times of social change. Longitudinal sampling took place at times of moving two bulls out of the collection and one new bull into an adjacent enclosure to the cow herd (between herd moves), and during a period of mixing this new bull with the cow herd to facilitate mating (within herd moves). Quantitative PCR was employed to detect EEHV 1a/b, 4a/b, and EF-1-α (housekeeping gene). Generalised estimating equations determined EEHV recrudescence odds ratios (OR) and relative viral DNA load. Sixteen EEHV 1a/b shedding events occurred, but no EEHV 4a/b was detected. All management-derived social changes promoted recrudescence (social change OR = 3.27, 95% CI = 0.412-26, p = 0.262; and between herd moves OR = 1.6, 95% CI = 0.178-14.4, p = 0.675), though within herd movements posed the most significant increase of EEHV reactivation odds (OR = 6.86, 95% CI = 0.823-57.1, p = 0.075) and demonstrated the strongest relative influence (post hoc Tukey test p = 0.0425). Shedding onset and magnitude ranged from six to 54 days and from 3.59 to 11.09 ΔCts. Differing challenges are associated with between and within herd movements, which can promote recrudescence and should be considered an exposure risk to naïve elephants.


Assuntos
Animais de Zoológico/virologia , Elefantes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Herpesviridae/fisiologia , Animais , Animais de Zoológico/fisiologia , Comportamento Animal , DNA Viral/genética , Elefantes/fisiologia , Feminino , Herpesviridae/classificação , Herpesviridae/genética , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Estudos Longitudinais , Masculino , Comportamento Sexual Animal , Carga Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Eliminação de Partículas Virais
14.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215874

RESUMO

Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein-Barr virus, human herpesvirus 6, cytomegalovirus, varicella-zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.


Assuntos
Herpesviridae/fisiologia , Esclerose Múltipla/virologia , Domínios Proteicos Ricos em Prolina , Proteínas Virais/química , Proteínas Virais/metabolismo , Fenômenos Fisiológicos Virais , Humanos , Mimetismo Molecular , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Oligodendroglia/metabolismo , Fosforilação , Fatores de Risco , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Domínios WW , Domínios de Homologia de src
15.
J Virol ; 96(4): e0183121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878808

RESUMO

Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.


Assuntos
Capsídeo/fisiologia , Herpesviridae/fisiologia , Montagem de Vírus/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA , Herpesvirus Humano 1/fisiologia , Humanos , Microscopia de Força Atômica , Mutação , Ligação Proteica , Domínios Proteicos , Vírion/genética , Vírion/metabolismo , Vírion/fisiologia
16.
Ecohealth ; 18(4): 440-450, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34870778

RESUMO

Clostridium perfringens is an important food-borne zoonotic pathogen and a member of the commensal gut microbiome of many mammals. Predisposing factors such as coinfection with other pathogens or diet change can, however, cause overgrowth and subsequent disease development. Here we investigated the occurrence of C. perfringens in a free-ranging badger population with up to 100% prevalence of herpesvirus infection. Herpesvirus reactivation is known to be associated with increased susceptibility bacterial infections. PCR screening of rectal swabs from 69 free-ranging badgers revealed 15.9% (11/69, 95% CI = 9.1-26.3%) prevalence of detectable C. perfringens (Type A) DNA in the digestive tracts of assymptomatic animals. The results of Fisher's exact test revealed C. perfringens detection was not biased by age, sex and seasons. However, badgers with genital tract gammaherpesvirus (MusGHV-1) reactivation (p = 0.007) and infection with a specific MusGHV-1 genotype (p = 0.019) were more prone to of C. perfringens proliferation, indicating coinfection biased dynamics of intestinal C. perfringens. An inclusion pattern analysis further indicated that, causally, MusGHV-1 reactivation potentiated C. perfringens detection. Whether or not specific MusGHV-1 genotype infection or reactivation plays a role in C. perfringens overgrowth or disease development in badgers will require further investigation. Nevertheless, a postmortem examination of a single badger that died of fatal disease, likely associated with C. perfringens, revealed MusGHV-1 detection in the small intestine.


Assuntos
Infecções por Clostridium/veterinária , Clostridium perfringens , Herpesviridae , Mustelidae , Animais , Proliferação de Células , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Clostridium perfringens/crescimento & desenvolvimento , Herpesviridae/fisiologia , Infecções por Herpesviridae/epidemiologia , Prevalência
17.
Viruses ; 13(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34960625

RESUMO

Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is known about de-envelopment. We propose a model in which de-envelopment involves two phases: (i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release), an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight membrane curvature, causing expansion of the membrane fusion pore and promoting release of capsids into the cytoplasm.


Assuntos
Capsídeo/metabolismo , Infecções por Herpesviridae/virologia , Herpesviridae/fisiologia , Proteínas Virais de Fusão/metabolismo , Núcleo Celular/virologia , Citoplasma/virologia , Herpesviridae/genética , Herpesviridae/ultraestrutura , Humanos , Fusão de Membrana , Membrana Nuclear/virologia , Fosforilação , Simplexvirus/genética , Simplexvirus/fisiologia , Envelope Viral , Proteínas Virais de Fusão/genética , Vírion , Rede trans-Golgi/virologia
18.
Viruses ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696343

RESUMO

Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world's population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.


Assuntos
Capsídeo/química , Capsídeo/metabolismo , Herpesviridae/fisiologia , Herpesviridae/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesviridae/genética , Humanos , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Montagem de Vírus , Replicação Viral
19.
Viruses ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34696402

RESUMO

Cell-cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell-cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell-cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell-cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.


Assuntos
Células Gigantes/fisiologia , Infecções por Herpesviridae/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betaherpesvirinae/metabolismo , Betaherpesvirinae/patogenicidade , Fusão Celular , Citomegalovirus/fisiologia , Células Gigantes/virologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 6/imunologia , Herpesvirus Humano 7/imunologia , Humanos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
20.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681671

RESUMO

The infection of mammalian cells by enveloped viruses is triggered by the interaction of viral envelope glycoproteins with the glycosaminoglycan, heparan sulfate. By mimicking this carbohydrate, some anionic polysaccharides can block this interaction and inhibit viral entry and infection. As heparan sulfate carries both carboxyl and sulfate groups, this work focused on the derivatization of a (1→3)(1→6)-ß-D-glucan, botryosphaeran, with these negatively-charged groups in an attempt to improve its antiviral activity. Carboxyl and sulfonate groups were introduced by carboxymethylation and sulfonylation reactions, respectively. Three derivatives with the same degree of carboxymethylation (0.9) and different degrees of sulfonation (0.1; 0.2; 0.4) were obtained. All derivatives were chemically characterized and evaluated for their antiviral activity against herpes (HSV-1, strains KOS and AR) and dengue (DENV-2) viruses. Carboxymethylated botryosphaeran did not inhibit the viruses, while all sulfonated-carboxymethylated derivatives were able to inhibit HSV-1. DENV-2 was inhibited only by one of these derivatives with an intermediate degree of sulfonation (0.2), demonstrating that the dengue virus is more resistant to anionic ß-D-glucans than the Herpes simplex virus. By comparison with a previous study on the antiviral activity of sulfonated botryosphaerans, we conclude that the presence of carboxymethyl groups might have a detrimental effect on antiviral activity.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Herpesviridae/efeitos dos fármacos , Ácidos Sulfônicos/química , beta-Glucanas/química , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Vírus da Dengue/fisiologia , Glucanos/química , Glucanos/farmacologia , Herpesviridae/fisiologia , Metilação , Células Vero , Internalização do Vírus/efeitos dos fármacos , beta-Glucanas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...